If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=1286408
We move all terms to the left:
4x^2-(1286408)=0
a = 4; b = 0; c = -1286408;
Δ = b2-4ac
Δ = 02-4·4·(-1286408)
Δ = 20582528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20582528}=\sqrt{10291264*2}=\sqrt{10291264}*\sqrt{2}=3208\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3208\sqrt{2}}{2*4}=\frac{0-3208\sqrt{2}}{8} =-\frac{3208\sqrt{2}}{8} =-401\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3208\sqrt{2}}{2*4}=\frac{0+3208\sqrt{2}}{8} =\frac{3208\sqrt{2}}{8} =401\sqrt{2} $
| (10-27/x)=1.1x | | 2x^2=1286408 | | 6-2s=10 | | 102x=10000 | | -2x-2=3x+4 | | -8(n+5)-6n=-98 | | 3x-9(x+2)=x+10 | | 15x+2= 10x+710x+7 | | 3n-10+n+20+n=180 | | 2x^2=643204 | | (5x+2)=(x+10) | | 8+.15x=10+.1x | | 7x+18=4(x-5) | | 5.9g+4=1.9g+28 | | 5(3x+7)=-29+34 | | -13.66+7.4p+14.93=9.7p+15.07 | | m-15=-20 | | 4x+14=3x-22 | | 15+0.10=10+0.15x | | m-15=-29 | | 75x-15=180 | | 80x^2-200x=-125 | | -3+1/2z=1 | | 1/3(t+6)-10=-3t=2 | | 6t-5=2-7-6t | | 2x-7=8-8 | | x+53+73+66=180 | | 16m^2=225 | | x+1/2x+30=4x+110 | | 1/3p+2/5=4/7 | | 3(5g-15)-15g+45=0 | | 20x-12=20x-3 |